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Abstract

The dynamic properties of joints are extremely difficult to model accurately using a purely analytical approach.

However, these properties can be extracted from experimental data. In this paper we present a method for establishing a

theoretical model of a joint from the substructures and assembly frequency–response function (FRF) data. The

identification process considers not only translational, but also rotational degrees of freedom (RDOFs). The validity of the

proposed method is demonstrated numerically and experimentally. A combined numerical–experimental approach was

used to identify the mass, stiffness and damping effects of a real bolted joint. Using the least-squares method, data from the

wide frequency range were used. A substructure synthesis method with the joint effects included was used to check the

extracted values.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many mechanical structures are composed of substructures connected together by joints such as bolts,
rivets, glue and welds. The main purpose of joint identification is to estimate the parameters of the joint that
minimize the difference between the measured assembly response characteristics and those predicted
analytically or numerically [1]. In the past few years, the numerical techniques used for structural dynamic
problems, such as the FEM, have made a lot of progress. However, the unmodeled variability in the joint’s
properties and the boundary conditions, as well as the unmodeled nonlinearities, are the main reasons for the
uncertainty of the finite-element (FE) models. Alternatively, the joint’s properties can also be extracted from
measured data.

To identify the joint’s structural parameters, measured modal parameters have been used in several studies.
These methods require accurate modal data, which are difficult to extract, especially in cases of closely coupled
and heavily damped modes [2].

In order to overcome the difficulties encountered when extracting accurate modal parameters, several
attempts were made to identify the joint’s properties from the measured substructure frequency–response
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.03.009

ing author. Tel.: +386 1 4771 608; fax: +386 1 2518 567.

ess: miha.boltezar@fs.uni-lj.si (M. Boltežar).
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functions (FRFs) and the joint-dependent FRFs of the whole structure using a least-squares method. Tsai and
Chou [3] proposed a method to identify the dynamic characteristics of a single bolt joint. Ren and Beards [4]
generalized the FRF joint-identification technique for systems involving multiple rigid and flexible joints. They
extracted the joint’s parameters from the experimental data and established a theoretical model of a joint. The
dynamic stiffness matrix of the joint was constructed using mass, stiffness, viscous and/or structural damping
matrices. An effort was made to reduce the effect of the measurement errors by introducing a proper criterion
for the best solution. Another identification method for linear joint models based on Ren’s method was
developed by Liu [5]. A robustness investigation of the proposed algorithms was also carried out.

However, an FRF measurement at a joint is usually not possible, so FRF-based identification methods also
face some difficulties. Yang and Park [2] combined incomplete measured FRFs with the substructure FE
model, which excludes the undetermined joint properties. The unmeasured FRFs were estimated by solving an
over-determined set of linear equations derived from measured FRFs and the FE model of the substructures.
By assuming a model of the joint, the joint’s structural parameters were extracted from measured and
estimated FRFs using an iterative output error algorithm.

Some investigations considered only translational degrees of freedom (TDOFs), while the rotational DOFs
(RDOFs) were taken into consideration using two closely separated TDOFs [3–6]. In some cases, when the
substructures are separated by a nut, two TDOFs on the contact area can represent the joint’s properties up to
a certain high frequency [3]. Unfortunately, this is not always the case in reality, so such formulations are not
sufficient.

A joint can also be modeled using a set of translational and rotational springs [2,7], but in this case the
cross-coupled terms between the TDOFs and RDOFs are not considered.

The full consequences and errors caused by excluding RDOF data in joint-parameter identification and
coupling analyses were not clearly understood in the past. Liu [5] investigated the impact of RDOF on joint-
parameter identification and came to the conclusion that the information about RDOFs plays an important
role in the identification process. However, from his work it is not clear how the RDOFs are included in the
identification process.

Yang et al. [8] considered the model of a joint as a coupled stiffness matrix, instead of just a set of
translational and rotational springs. Their method used an accurately calibrated FE model of the
unconstrained structure to obtain the necessary information about the RDOFs. Next, a substructural
synthesis method was used to identify the translational and rotational stiffness of the joint. The model of the
joint was considered as a coupled stiffness matrix, instead of just a set of translational and rotational springs
[8]. Unfortunately, their formulation includes many inverse operations and is therefore subjected to numerical
errors. Furthermore, no damping was addressed in their paper.

In this paper an improved joint-identification method is presented. The method is based on that developed
by Ren and Beards [4,6,7]. In contrast to the original method, where the effects of rotation were excluded, in
our derivation not only the mass, stiffness and damping effects, but also the effects of rotation, are considered.
The merit of this approach is that it handles the TDOFs and RDOFs in a clear and systematic way, which
easily allows an expansion to more DOFs or to a larger number of joints. In order to make our identification
method more suitable for experimental use, a new identification equation was also developed.

Following the example of Ren and Beards a joint-identification algorithm for the least-squares solution is
also used. The feasibility of the proposed identification method is tested numerically and experimentally.
2. Identification of linear joints

Linear models of joints are mostly used for modeling tightly fastened joints, while nonlinear models
normally exhibit friction-related nonlinearities. The load–deformation relationship in the normal direction
becomes effectively linear after a pre-load and can be considered as linear in most applications, while the
relationship in the tangential direction is always nonlinear and energy is dissipated when a cyclic load is
applied [5]. In most engineering structures the friction joints are often tightly fastened so that their potential
nonlinear behavior is suppressed and so it is not significant. The main concern of this paper is linear models of
joints.
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2.1. Theory

The identification of real joint parameters can only be carried out using experimental data. The most
convenient way is to use FRFs, which can be measured directly. In our case, receptance data were used.

The basic strategy of most FRF joint-identification techniques is to measure the properties of a substructure
system without joints and an assembly system with joints. The difference between the dynamic properties of
the two cases is the result of the joints [1].

Consider a model with three systems: the first is the substructure system, the second is the joint system and
the third is the assembly system, as shown in Fig. 1[4]. For the substructure system the coordinates are divided
into joint and internal coordinates, with the subscripts b and a, respectively. The coordinates on the assembly
are also divided into joint and internal coordinates, with the subscripts j and n, respectively. The joint system is
represented by subscript c. Assuming no external moment acting on the coordinates a and n, ma ¼ 0 and
mn ¼ 0, the relationship between the input and the output of the substructure can be expressed as
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where x, h, f and m are the displacement, the angular displacement, the force and the moment, respectively.
TT, TR, RT and RR are the frequency–response matrices corresponding to the TDOFs and RDOFs. For the
internal coordinates (a), only TDOFs are considered, while for the joint coordinates (b), TDOFs and RDOFs
are considered. The receptance matrices are denoted in the same way as in Ref. [8]. The relationship for the
assembly is
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The characteristics of the joint can be described by the dynamic stiffness matrix Zj,
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. (3)

The forces and displacements of the internal coordinates experience no change before and after the coupling

fa ¼ fn and xa ¼ xn. (4)

The equilibrium and compatibility conditions at the joint coordinates must also be satisfied, therefore
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Fig. 1. Three systems in joint identification.
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Substituting the compatibility and equilibrium conditions (4) and (5) into Eq. (1) gives
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Substituting the joint’s characteristics (3) into Eq. (6), and considering equilibrium conditions at the joint’s
coordinates (5), the following equation is obtained:
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Rearranging Eq. (7) leads to
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Rearranging, Eq. (1) can be written in the form
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Using Eq. (8) and the compatibility conditions (4), (5) in Eq. (9), and comparing with the assembly
characteristics (2), gives
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and
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Finally, substituting Eq. (11) into Eq. (10) leads to equations for the identification of the dynamic stiffness
matrix of the joint Zj ðN �NÞ
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Distinguishing between the joint and non-joint coordinates is very convenient in this case. It should be
stressed that the coordinates of the joint are fixed, while the non-joint coordinates can be chosen more freely.

Unfortunately, the FRF matrices relating to the joint coordinates and the RDOFs are not always possible
to measure. However, in most cases the necessary information about RDOFs for unconstrained substructures
can be obtained from the accurately calibrated FE model. However, in order to identify the real joint
parameters, FRFs of the assembly need to be measured.



ARTICLE IN PRESS
D. Čelič, M. Boltežar / Journal of Sound and Vibration 317 (2008) 158–174162
Obviously, Eq. (13) is not very convenient for practical use. In order to overcome this problem, an
alternative form of the identification (Eq. (13)) was developed
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where ½ �þ stands for the generalized or pseudo-inverse [9]. The derivation of Eq. (14) is given in Appendix A.
Using Eq. (14), only the receptance matrices TTnn, TTjn and RTjn need to be measured, while all the other

receptance matrices can be obtained from the substructure FE models. The matrix TTnn refers to non-joint
coordinates and can easily be measured. It is a little more complicated to measure the TTjn matrix, where the
responses have to be measured at the joint coordinates. However, measuring the RTjn matrix is the most
difficult task. The latter can only be measured by using special rotational transducers.

Another possibility for solving this problem is to use the equation

½TTaa � TTnn� ¼ ½TTab TRab� � ½TTaa � TTnn�

(

�
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RTba

" #þ
TTbb TRbb

RTbb RRbb

" #)
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, (15)

which is a truncated form of Eq. (14). In this case only the TTnn matrix needs to be measured. Although this is
a very convenient method, there is still a major drawback: important information about the system is lost.

The third option is to estimate the unmeasured FRFs by solving an over-determined set of linear equations
derived from measured FRFs and the substructure FE model [2]. If the number of measured FRFs is greater
than or equal to that of the joint-related DOFs, then, according to Yang and Park [2], the unmeasured FRFs
can be estimated using the following equation:

fhestðoÞg ¼ ½DbeðoÞ�þðfIlbg � ½DbmðoÞ�fhmðoÞgÞ, (16)

where fhmðoÞg is the measured FRF column vector, fhestðoÞg is the FRF column vector to be estimated, and
DbmðoÞ and DbeðoÞ are the known dynamic stiffness matrices of the substructure system.

2.2. Joint-identification algorithm

Eqs. (13)–(15) all have the general form

CðM�LÞ ¼ AðM�NÞZj ðN�NÞBðN�LÞ, (17)

where A, B and C are coefficient matrices and M, N and L represent the size of the corresponding matrix. If
M ;LXN and the matrices A and B are nonsingular, Eq. (17) becomes determined or over-determined and Zj

can be solved uniquely [4,10]. The least-squares solution of Eq. (17) is

Zj ¼ AþCBþ, (18)

where the superscript plus sign denotes the pseudo-inverse of the matrix. Eq. (17) can also be re-written as a set
of linear equations

EðoÞzðoÞ ¼ gðoÞ, (19)

where z is a frequency-dependent N2 � 1 vector whose elements are constructed from Zj [4]. E is the coefficient
matrix constructed from matrices A and B, and g is a coefficient vector constructed from the matrix C. Ren
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and Beards [4] also introduced a linear transformation to convert the vector z into a frequency-independent
vector x

zðoÞ ¼ Tf x, (20)

using a transformation matrix

Tf ¼ I �
o2

o2
0

I i
o
o0

I iI

� �
, (21)

where o0 is a reference angular frequency, which is usually equal to the maximum measured frequency [4].
Vector x is formed in terms of the mass, the stiffness and the damping matrices as follows:

x ¼ fk o2
0m o0c dgT. (22)

The substitution of Eq. (20) into Eq. (19) yields

EðoÞTf x ¼ gðoÞ. (23)

Since the vector x is frequency independent, Eq. (23) at different frequencies can be combined directly, and the
solution in the sense of least squares can be found [10]

x ¼
Xn

i¼1

½ðEðoÞÞTEðoÞ��1
Xn

i¼1

ððEðoÞÞTgðoÞÞ

" #
. (24)

Identified elements of the mass, the stiffness and the damping matrices are then constant values, which are
valid across the whole selected frequency range.

Although this solution is quite useful from the theoretical point of view, there are some difficulties in its
practical usage. With the identification of real joints, some nonlinearities, measurement noise and numerical
errors are inevitably present. In this case the vector x becomes frequency dependent and its least-squares
solution is incorrect. By finding the solution of Eq. (23) for each particular frequency, an indication of the
system’s nonlinearities and error effects can be given.

If the system is lightly damped, the magnitude of the FRFs at the resonant frequencies will be much higher
than that at the other frequencies. Consequently, although all the measured data are used at the same time, the
results are dominated by the data at just a few frequency points [10]. To improve the results the data at
different frequencies and at different coordinates should be properly weighted. Different weighting techniques
are discussed in Refs. [4,10].

Choosing a proper frequency range and the correct number of frequency points is also essential to the
accuracy of the identification. It is not the total number of equations, but the number of effective equations
that is important in the identification. A sufficiently wide frequency range and sufficiently well-spaced
coordinates should be measured [10]. It is generally believed that the effects of measurement errors can be
significantly magnified at resonance frequencies, and therefore they should be excluded in the identification
process [4,8,10].

3. Case studies

In order to check the feasibility of the proposed identification method, numerical and experimental work
was carried out. A numerical example and an experimental case are presented. The numerical example deals
with the multiple degree of freedom (MDOF) system on a purely analytical basis.

3.1. Numerical case study 1

The proposed method was verified on a simple linear MDOF mass–spring system with six TDOFs ðx12x6Þ

and six RDOFs ðf12f6Þ, as shown in Fig. 2. The 12 DOF system is treated as an assembly composed of a
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Fig. 2. MDOF mass–spring system; (a) front view, (b) top view; m represents mass and M is the external momentum.

Table 1

Input data of MDOF system

Index Mass, m (kg) Mass moment of

inertia, J ðkgm2Þ

Stiffness, k ðNm�1Þ Moment arm, a (m)

1 3 0.7 3 � 106 0.05

2 1 0.5 5 � 107 0.05

3 2 0.6 1 � 108 0.05

4 1 0.2 5 � 106 0.05

5 2 0.6 3 � 107 0.05

6 1.5 0.4 7 � 106 0.05

7 – – 2 � 107 –

8 – – 1 � 106 –

D. Čelič, M. Boltežar / Journal of Sound and Vibration 317 (2008) 158–174164
joint and two subsystems. The joint is represented by two translational springs with stiffness coefficients ka1

and ka2. Since no mass and damping effects are included in the joint, the model of the joint can be considered
just in terms of the stiffness matrix

Zj ¼
KTT KTR

KRT KRR

" #
. (25)

Assuming infinitesimal rotations, a simple analytical solution for the MDOF system can be found. Table 1
shows the selected input data for the MDOF system. By changing the values of the stiffness coefficients ka1

and ka2, more or less flexible joints can be simulated and the effectiveness of the identification procedure can
be tested.

Using the theory of MDOF systems, substructure and assembly FRFs were calculated. After that the joint
parameters Zj were identified using Eq. (14) and the joint-identification algorithm (Section 2.2). For selected
values of the stiffness coefficients ka1 ¼ 1010 Nm�1 and ka2 ¼ 1011 Nm�1 the identified dynamic stiffness
matrix of the joint had the form

Zj ¼

1:1000 �1:1000 �0:0450 0:0450

�1:1000 1:1000 0:0450 �0:0450

�0:0450 0:0450 0:0028 �0:0028

0:0450 �0:0450 �0:0028 0:0028

2
6664

3
7775 � 1011. (26)

In order to check the influence of errors on the identification results, the dynamic stiffness matrix of the
joint Zj was identified at each particular frequency. According to the assumed model, our system is completely
linear, and therefore the identified elements of the stiffness matrix should be constant values.
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Fig. 3. The result of the joint identification at each individual frequency point for various stiffness coefficients ka1 ¼ ka2; rank and

condition number of a matrix product EðoÞTf from Eq. (23) vs. stiffness coefficients ka1 ¼ ka2 and frequency.
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Fig. 3 shows the element Kð1; 1Þ of the identified stiffness matrix KTT as a function of the frequency
and stiffness coefficients ka1 ¼ ka2. At a sufficiently low level of the stiffness coefficients, i.e., ka1 ¼

ka2 ¼ 1012 Nm�1, the identified KTT is approximately constant within the selected frequency range. However,
by increasing ka1 and ka2 more discrepancies appear and KTT becomes frequency dependent.

Fig. 3 also shows the rank and the condition number of the matrix product EðoÞTf from Eq. (23) as a
function of the frequency and stiffness coefficients. In the plot of Kð1; 1Þ some discrepancies (peaks) are seen at
ka1 ¼ ka242 � 1013 Nm�1 and at approximately 2 kHz. Also, the plots of the rank and the condition number
resemble erroneous behavior at the same frequency; the rank falls from full rank (16) to 15, and the condition
number is the highest exactly in that area. From Fig. 3 it is clear, that the bad identification results are a
consequence of the system’s ill-conditioning.

From the identified parameters of the joint and the noise-free FRFs of the substructures, the assembly
FRFs were reconstructed. The quality of the identification can be visualized by comparing the exact and the
reconstructed assembly FRFs.
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D. Čelič, M. Boltežar / Journal of Sound and Vibration 317 (2008) 158–174166
Figs. 4 and 5 show the results of the identification for the soft and stiff joints, respectively. Very good
agreement between the exact and reconstructed receptance curves was obtained in both cases (Figs. 4 and 5).
In other words, our identification theory performs very well with the noise-free data.

The dash–dot lines in Figs. 4 and 5 represent the rigid coupling of the substructures [10–13]. If the joint is
stiff enough, the limit state, i.e., a rigid connection, is achieved. This is the case in Fig. 5. It must be stressed
that the receptance RTjn relates to the RDOFs and TDOFs. It appears that the dash–dot curve and the solid
curve in Fig. 5 are exact fit.

If the RDOFs are excluded in the identification process, important information about the system is lost. For
the system in Fig. 2, the influence of considering the RDOFs on the identification results is illustrated in Fig. 6.
The dashed curve in Fig. 6 represents the identification result in the case when only TDOFs were taken into
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Fig. 7. (a) Real assembly and (b) finite-element model.

bolt rubber nut

steel washer

Fig. 8. Joint composition.
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consideration, while the solid line represents the result of the identification theory including the RDOFs. It is
evident that considering only TDOFs is not sufficient for the identification of the joint.
3.2. Experimental case study

The test assembly consisted of two parallel steel beams with the same rectangular cross section, 29� 10mm,
and a length of 500mm, which were connected together by an elastic joint, as shown in Fig. 7(a). The joint
consisted of a bolt, rubber and steel washers, as shown in Fig. 8.

An electrodynamic shaker was used to measure the substructure and the assembly FRFs (Fig. 9). The
measurements were made at five coordinates on each substructure, which results in 10 coordinates on the
assembly, as shown in Fig. 7(a). The measured accelerance data were converted to receptance data by
multiplying the accelerance by �1=o2.

The structure was suspended in such a manner that it could vibrate only in one translational direction and
one rotational direction (z and a in Fig. 7(a)). The joint was assumed to have two TDOFs (U2z, S3z) and two
RDOFs (U2a, S3a). Consequently, the dynamic stiffness matrix of the joint had the form

Zj ¼

U2z=U2z U2z=S3z U2z=U2a U2z=S3a

S3z=U2z S3z=S3z S3z=U2a S3z=S3a

U2a=U2z U2a=S3z U2a=U2a U2a=S3a

S3a=U2z S3a=S3z S3a=U2a S3a=S3a

2
66664

3
77775 ¼

ZTT ZTR

ZRT ZRR

" #
.

Using the available equipment (Fig. 9) only FRF data related to TDOFs were measured. An example of a
measured FRF is shown in Fig. 10. Unfortunately, the identification of the dynamic stiffness matrix of the
joint Zj using Eq. (13) or Eq. (14) could not be made without FRF data related to the RDOFs. This was the
main obstacle in the identification process.
Fig. 9. FRF measurement using electrodynamic shaker.
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Instead of measuring RDOFs, which is a very difficult task, unmeasured FRFs were estimated from the
substructure FE model without a joint (Fig. 7(b)) and measured FRFs using Eq. (16). In order to do this
the substructure FE models had to be accurately calibrated.
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Receptance data were calculated from the modal data [9]. For each substructure 150 modes of vibration
were used, which covers the frequency range up to 58 kHz, and for the assembly 300 modes of vibration were
used, which covers the frequency range up to 47 kHz. A comparison of the measured and calculated FRFs for
a symmetric beam is shown in Fig. 11. Since measuring FRFs at the joint’s coordinates is not always possible,
joint-related FRFs were also estimated. A comparison of the measured and estimated joint-related assembly
FRFs is shown in Fig. 12.

Partly measured and partly estimated FRFs were used for the joint identification and to predict the
assembly FRFs. Apparently, if the joint properties are accurately identified, the response of the assembly must
be accurately predicted from the substructure FRFs and the identified joint parameters. The model of the joint
was considered in terms of the mass, stiffness and hysteretic damping matrices

Zj ¼
KTT KTR

KRT KRR

" #
� o2

MTT MTR

MRT MRR

" #
þ i

DTT DTR

DRT DRR

" #
. (27)

As already stated in Ref. [5], it is very important how many and which internal DOFs are used to achieve an
acceptable result. The number of internal DOFs should at least be equal to the number of unknown joint
parameters. From the simulations, the specific selection of four TDOFs (S1z, S2z, U1z, U4z) and two RDOFs
(S1a, S2a) as internal DOFs gave the best result.
3.2.1. Results of the joint identification

Two identification procedures were performed. In first case, the dynamic stiffness matrix of the joint Zj was
calculated for each individual frequency point, using Eq. (14). This solution is denoted as the direct solution. The
identified element of the dynamic stiffness matrix Zjð1; 1Þ is shown in Fig. 13. Based on the identified joint data
and the substructure FRFs the assembly FRFs were regenerated (Fig. 14). The results of the identification are
very good in the frequency range from 0 to 900Hz. However, some discrepancies appear at higher frequencies.

In the second case, using Eq. (14) the least-squares solution (Eq. (24)) for the dynamic stiffness matrix of the
joint Zj was performed. In order to avoid inaccurate results the frequency points included in the identification
process had to be properly selected. Following the example from the numerical case study, the condition
number of the matrix product EðoÞTf from Eq. (23) was used as a measure for selecting the frequency points.
In our case, the frequency-selection criterion was

condðEðoÞTf Þo5 � 1019.
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D. Čelič, M. Boltežar / Journal of Sound and Vibration 317 (2008) 158–174 171
Since the system is highly ill-conditioned, the parameters are non-unique solutions to an ill-conditioned
problem. The identified stiffness, mass and viscous-damping matrices are given in Table 2 and the element of
the dynamic stiffness matrix Zjð1; 1Þ is shown in Fig. 15. From the identified joint parameters and the
substructure FRFs (measured and evaluated), the assembly FRFs were reconstructed. A comparison of the
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Table 2

Identified stiffness, mass and hysteretic damping matrices of the joint

K ¼

�0:4143 �0:2354 �0:0023 0:0065

�3:3131 �1:2957 0:0430 0:1099

0:0585 0:0139 �0:0054 0:0015

0:1925 0:0616 �0:0048 �0:0036

2
6664

3
7775 � 106

M ¼

�0:0277 0:0015 0:0003 0:0001

�0:0155 �0:0076 0:0002 0:0006

0:0000 �0:0000 �0:0000 0:0000

0:0014 0:0006 �0:0000 �0:0000

2
6664

3
7775

D ¼

5:5274 0:6317 �0:0262 �0:0315

�1:4468 �2:7956 0:0006 0:3167

1:5624 �0:3331 �0:0271 �0:0068

0:2614 �0:0492 �0:0127 0:0244

2
6664

3
7775 � 105
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Fig. 15. Identified dynamic stiffness Zjð1; 1Þ—least-squares solution of Eq. (14).
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measured and the reconstructed assembly receptances is given in Fig. 16. Although there are, in general, large
discrepancies between the measured and reconstructed receptances in Fig. 16, some resonant frequencies are
still correctly predicted by the reconstructed solution.

4. Conclusions

In this work, Ren and Beards’ [4] joint-identification theory was extended to RDOFs. The validity of the
proposed method was tested numerically and experimentally. From the numerical example it is evident that
the exclusion of the RDOFs in the identification process leads to erroneous results.

Through numerical testing it became apparent that the numerical errors, as a consequence of system
singularities, are the main reason for the erroneous results. The singularity problems can be reduced by an
appropriate weighting of the equations, but they cannot be removed completely. Another possibility for
solving these problems is the elimination of the linearly dependent equations from the whole system of
equations. However, this task should be done with great caution, because important information about the
system can be lost in this way.

Receptances related to joint coordinates and RDOFs are very difficult to measure. In this work an
alternative solution to this problem was investigated. According to Ref. [2], unmeasured FRFs were estimated
using the substructure FE model and measured FRF data. In contrast to similar methods [8,13], in our case
the FRF data from the accurately calibrated FE model were not used directly in the identification process.
However, these data were used for the estimation of the unmeasured FRFs. This approach also makes possible
the identification of the damping in the joint.

Although the system was ill-conditioned, some useful results were obtained in the low-frequency range. The
direct solution on a frequency-by-frequency basis gives very good results in the frequency range from 0 to
900Hz.

Since a non-parametric model of the joint was used in the joint identification, and due to the nature of the
least-squares approach, we get a non-physical solution, in general. However, this solution can still be used for
a prediction of the assembly response in the frequency domain or as a starting value for the updating process.

It must be stressed that the MDOF system is a discrete system, while the beam is a continuum in nature. In
the real world materials are not ideally homogeneous and isotropic, and therefore deriving a parametrical
model of the joint is a very difficult task.

Appendix A

Eq. (13) for the identification of the dynamic stiffness matrix of the joint Zj is appropriate for the numerical
tests only. An alternative form of Eq. (13) is presented, which is more convenient for practical applications.

Rearranging Eq. (11) leads to

TTnj TRnj

TTjj TRjj

RTjj RRjj

2
64

3
75 Iþ Zj

TTbb TRbb

RTbb RRbb

" # !
¼

TTab TRab

TTbb TRbb

RTbb RRbb

2
64

3
75 (A.1)

and furthermore

TTnj TRnj

TTjj TRjj

RTjj RRjj

2
64

3
75Zj

TTbb TRbb

RTbb RRbb

" #
¼

TTab TRab

TTbb TRbb

RTbb RRbb

2
64

3
75�

TTnj TRnj

TTjj TRjj

RTjj RRjj

2
64

3
75. (A.2)

Eq. (13) can also be rearranged in the form

TTaa � TTnn

TTba � TTjn

RTba � RTjn

2
64

3
75 TTba

RTba

" #þ
¼

TTnj TRnj

TTjj TRjj

RTjj RRjj

2
64

3
75Zj , (A.3)
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where ½ �þ stands for pseudo-inverse [9]. Substituting Eq. (A.3) into Eq. (A.2) yields

TTaa � TTnn

TTba � TTjn

RTba � RTjn

2
64

3
75 TTba

RTba

" #þ
TTbb TRbb

RTbb RRbb

" #
¼

TTab TRab

TTbb TRbb

RTbb RRbb

2
64

3
75�

TTnj TRnj

TTjj TRjj

RTjj RRjj

2
64

3
75. (A.4)

Rearranging Eq. (A.4) as

TTnj TRnj

TTjj TRjj

RTjj RRjj

2
64

3
75 ¼

TTab TRab

TTbb TRbb

RTbb RRbb

2
64

3
75�

TTaa � TTnn

TTba � TTjn

RTba � RTjn

2
64

3
75 TTba

RTba

" #þ
TTbb TRbb

RTbb RRbb

" #
(A.5)

and substituting into Eq. (13) leads to

TTaa � TTnn

TTba � TTjn

RTba � RTjn

2
664

3
775 ¼

TTab TRab

TTbb TRbb

RTbb RRbb

2
664

3
775�

TTaa � TTnn

TTba � TTjn

RTba � RTjn

2
664

3
775

8>><
>>:

�
TTba

RTba

" #þ
TTbb TRbb

RTbb RRbb

" #9>>=
>>;Zj

TTba

RTba

" #
. (A.6)
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